Subject-Specific p-FE Analysis of the Proximal Femur Utilizing Micromechanics-Based Material Properties

نویسندگان

  • Zohar Yosibash
  • Nir Trabelsi
  • Christian Hellmich
چکیده

Novel subject-specific high-order finite element models of the human femur based on computer tomographic (CT) data are discussed with material properties determined by two different methods, empirically based and micromechanics based, both being determined from CT scans. The finite element (FE) results are validated through strain measurements on a femur harvested from a 54-year-old female. To the best of our knowledge, this work is the first to consider an inhomogeneous Poisson ratio and the first to compare results obtained by micromechanics-based material properties to experimental observations on a whole organ. We demonstrate that the FE models with the micromechanics-based material properties yield results which closely match the experimental observations and are in accordance with the empirically based FE models. Because the p-FE micromechanics-based results match independent experimental observations and may provide access to patient-specific distribution of the full elasticity tensor components, it is recommended to use a micromechanics-based method for subject-specific structural mechanics analyses of a human femur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof Copy [ Bio - 10 - 1416 ] 006105 Jby

6 Patient-specific high order finite-element (FE) models of human femurs based on quantitative computer tomography (QCT) with inhomogeneous orthotropic and isotropic material properties are addressed. The point-wise orthotropic properties are determined by a micromechanics (MM) based approach in conjunction with experimental observations at the osteon level, and two methods for determining the ...

متن کامل

Validation of subject-specific automated p-FE analysis of the proximal femur.

BACKGROUND The use of subject-specific finite element (FE) models in clinical practice requires a high level of automation and validation. In Yosibash et al. [2007a. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J. Biomechanics 40, 3688-3699] a novel method for generating high-order finite element (p-FE) models fro...

متن کامل

Analysis of the Geometry of the Distal Femur and Proximal Tibia in the Osteoarthritic Knee: A 3D Reconstruction CT Scan Based Study of 449 Cases

    Background: The aim of this study is to evaluate the geometry of the distal femur and the proximal tibia in the osteoarthritic knee using 3D reconstructive CT scan imaging. Methods: 449 patients with knee osteoarthritis were treated surgically in our center with patient-specific technology total knee arthroplasty. Preoperatively, all the patients underwent a CT scan according to a standard ...

متن کامل

Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.

High-order finite-element (FE) analyses with inhomogeneous isotropic material properties have been shown to predict the strains and displacements on the surface of the proximal femur with high accuracy when compared with in vitro experiments. The same FE models with inhomogeneous orthotropic material properties produce results similar to those obtained with isotropic material properties. Herein...

متن کامل

Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.

The objectives of this study were (1) to develop subject-specific experimental and finite element (FE) techniques to study the three-dimensional stress-strain behavior of ligaments, with application to the human medial collateral ligament (MCL), and (2) to determine the importance of subject-specific material properties and initial (in situ) strain distribution for prediction of the strain dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009